Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
J Invertebr Pathol ; 204: 108081, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38458349

ABSTRACT

Epizootics of the entomopathogenic fungus Metarhizium rileyi regulate lepidopteran populations in soybean, cotton, and peanut agroecosystems to the point that insecticide applications could be unnecessary. However, the contribution and how different strains operate during the epizootic are unknown. Several unanswered questions remain: 1. How many genotypes of M. rileyi are present during an epizootic? 2. Which genotype is the most common among them? 3. Are the genotypes involved in annual epizootics at the same location the same? Therefore, the development of molecular markers to accurately identify these genotypes is very important to answer these questions. SSR primers were designed by prospecting in silico to discriminate genotypes and infer the genetic diversity of M. rileyi isolates from the collection kept at Embrapa Soybean. We tested 13 SSR markers on 136 isolates to identify 43 clones and 12 different genetic clusters, with genetic diversity ranging from Hs = 0.15 (cluster I) to Hs = 0.41 (cluster IV) and an average diversity of 0.24. No clusters were categorically distinguished based on hosts or geographical origin using Bayesian clustering analysis. Nonetheless, some clusters comprised most of the isolates with a common geographic origin; for example, cluster VIII was mainly composed of isolates from Central-western Brazil, cluster II from Southern Brazil, and cluster XII from Quincy, Northern Florida, in the United States. Underrepresented regions (few isolates) from Pacific Island nations of Japan, the Philippines, and Indonesia (specifically from Java) were placed into clusters IX and X. Although the analyzed isolates displayed evidence of clonal structure, the genetic diversity indices suggest a potential for the species to adapt to different environmental conditions.

2.
Fungal Biol ; 127(12): 1505-1511, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38097324

ABSTRACT

Laboratory research in Ghana demonstrated the effectiveness of an isolate of Beauveria bassiana (IMI 389521) from the United Kingdom against the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae), a major pest of stored maize. The minimum effective concentration, following artificial infestation trials on maize, was between 109 and 1010 cfu/kg maize. Before moving out to village-level control, a major requirement was to determine if the product could effect control in artificially infested maize held under real environmental conditions in several locations in Ghana. Therefore, this study investigated the efficacy of formulated conidia of B. bassiana, IMI 389521, at two concentrations (1 × 109 and 3.16 × 109 cfu/kg maize) to control P. truncatus on stored maize kernels under semi-field conditions in Ghana. Maize ('Obatanpa' cultivar) kernels were treated with the formulated B. bassiana product and stored in polypropylene woven bags in cribs in Southern Ghana. After 24 h, one hundred adults of P. truncatus were placed into each bag containing the treated maize. Mortality and the percent of weight loss of kernels were assessed every two weeks for three months. The semi-field trials revealed the possibility of successfully controlling adult P. truncatus on maize kernels treated with B. bassiana at 3.16 × 109 cfu/kg maize. However, due to the minimal protection of kernels after four weeks, re-treating maize kernels after this period is recommended to ensure maximum protection during prolonged storage.


Subject(s)
Beauveria , Coleoptera , Animals , Zea mays , Ghana , Edible Grain , Pest Control, Biological
3.
Fungal Biol ; 127(12): 1524-1533, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38097326

ABSTRACT

We investigated conidial mass production of eight isolates of six entomopathogenic fungi (EPF), Aphanocladium album (ARSEF 1329), Beauveria bassiana (ARSEF 252 and 3462), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium anisopliae sensu lato (ARSEF 2341), Metarhizium pingshaense (ARSEF 1545), and Simplicillium lanosoniveum (ARSEF 6430 and 6651) on white or brown rice at four moisture conditions (75-100%). The tolerance of mass-produced conidia of the eight fungal isolates to UV-B radiation and heat (45 °C) were also evaluated. For each moisture content compared, a 20-g sample of rice in a polypropylene bag was inoculated with each fungal isolate in three replicates and incubated at 28 ± 1 °C for 14 days. Conidia were then harvested by washing the substrate, and conidial concentrations determined by haemocytometer counts. Conidial suspensions were inoculated on PDAY with 0.002% benomyl in Petri plates and exposed to 978 mW m-2 of Quaite-weighted UV-B for 2 h. Additionally, conidial suspensions were exposed to 45 °C for 3 h, and aliquots inoculated on PDAY with benomyl. The plates were incubated at 28 ± 1 °C, and germination was assessed at 400 × magnification after 48 h. Conidial production was generally higher on white rice than on brown rice for all fungal species, except for L. aphanocladii ARSEF 6433, regardless of moisture combinations. The 100% moisture condition provided higher conidial production for B. bassiana (ARSEF 252 and ARSEF 3462) and M. anisopliae (ARSEF 2341) isolates, while the addition of 10% peanut oil enhanced conidial yield for S. lanosoniveum isolate ARSEF 6430. B. bassiana ARSEF 3462 on white rice with 100% water yielded the highest conidial production (approximately 1.3 × 1010 conidia g-1 of substrate). Conidia produced on white rice with the different moisture conditions did not differ in tolerance to UV-B radiation or heat. However, high tolerance to UV-B radiation and heat was observed for B. bassiana, M. anisopliae, and A. album isolates. Heat-treated conidia of S. lanosoniveum and L. aphanocladii did not germinate.


Subject(s)
Beauveria , Metarhizium , Spores, Fungal , Hot Temperature , Benomyl , Pest Control, Biological
4.
Fungal Biol ; 127(12): 1544-1550, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38097328

ABSTRACT

Metarhizium spp. is used as a biocontrol agent but is limited because of low tolerance to abiotic stress. Metarhizium robertsii is an excellent study model of fungal pathogenesis in insects, and its tolerance to different stress conditions has been extensively investigated. Priming is the time-limited pre-exposure of an organism to specific stress conditions that increases adaptive response to subsequent exposures. Congo red is a water-soluble azo dye extensively used in stress assays in fungi. It induces morphological changes and weakens the cell wall at sublethal concentrations. Therefore, this chemical agent has been proposed as a stressor to induce priming against other stress conditions in entomopathogenic fungi. This study aimed to evaluate the capacity of Congo red to induce priming in M. robertsii. Conidia were grown on potato dextrose agar with or without Congo red.The tolerance of conidia produced from mycelia grown in these three conditions was evaluated against stress conditions, including osmotic, oxidative, heat, and UV-B radiation. Conidia produced on medium supplemented with Congo red were significantly more tolerant to UV-B radiation but not to the other stress conditions assayed. Our results suggest that Congo red confers trans-priming to UV-B radiation but not for heat, oxidative, or osmotic stress.


Subject(s)
Metarhizium , Metarhizium/physiology , Congo Red , Ultraviolet Rays , Spores, Fungal/physiology
5.
Fungal Biol ; 127(7-8): 1157-1179, 2023.
Article in English | MEDLINE | ID: mdl-37495306

ABSTRACT

For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.


Subject(s)
Biology , Brazil , France , Spain , Mexico
6.
Fungal Biol ; 127(7-8): 1180-1186, 2023.
Article in English | MEDLINE | ID: mdl-37495307

ABSTRACT

The azo dye Congo Red (CR) is frequently used as an agent to elicit cell wall integrity stress in fungi. This highly toxic aromatic, heterocyclic compound contains two azo bonds as chromophore, which are responsible for protonation under acidic conditions, leading to changes in the molecular structure of the dye and the color of the solution. The investigation of how CR affects the growth of Aspergillus nidulans and Aspergillus niger on surface cultures provided us with evidence about its pH-dependent toxicity. Reducing the starting pH of the media from 7 to 3 decreased both the toxicity of CR and the dose-dependence of its toxicity substantially. These changes can be explained by the pH-dependent structural changes of CR and its precipitation at low pH. The pH also depended on the fungi; they could induce a decrease or even an increase, which could be important in the loss of dose-dependence. Our experiments led to the conclusion that in studies to evaluate the antifungal effect of CR, properly buffered solutions with pH values adjusted to above 5 are highly recommended to achieve a well-detectable and dose-dependent antifungal effect. However, for decolorization of CR solutions, lower pH is suggested where the decreased toxicity and solubility of CR could help this process.


Subject(s)
Aspergillus nidulans , Congo Red , Congo Red/pharmacology , Aspergillus niger/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Hydrogen-Ion Concentration
7.
Fungal Biol ; 127(7-8): 1209-1217, 2023.
Article in English | MEDLINE | ID: mdl-37495310

ABSTRACT

Little is known about the impact of hypoxia and anoxia during mycelial growth on tolerance to different stress conditions of developing fungal conidia. Conidia of the insect-pathogenic fungus Metarhizium robertsii were produced on potato dextrose agar (PDA) medium under normoxia (control = normal oxygen concentrations), continuous hypoxia, and transient anoxia, as well as minimal medium under normoxia. The tolerance of the conidia produced under these different conditions was evaluated in relation to wet heat (heat stress), menadione (oxidative stress), potassium chloride (osmotic stress), UV radiation, and 4-nitroquinoline-1-oxide (=4-NQO genotoxic stress). Growth under hypoxic condition induced higher conidial tolerance of M. robertsii to menadione, KCl, and UV radiation. Transient anoxic condition induced higher conidial tolerance to KCl and UV radiation. Nutritional stress (i.e., minimal medium) induced higher conidial tolerance to heat, menadione, KCl, and UV radiation. However, neither of these treatments induced higher tolerance to 4-NQO. The gene hsp30 and hsp101 encoding a heat shock protein was upregulated under anoxic condition. In conclusion, growth under hypoxia and anoxia produced conidia with higher stress tolerances than conidia produced in normoxic condition. The nutritive stress generated by minimal medium, however, induced much higher stress tolerances. This condition also caused the highest level of gene expression in the hsp30 and hsp101 genes. Thus, the conidia produced under nutritive stress, hypoxia, and anoxia had greater adaptation to stress.


Subject(s)
Metarhizium , Vitamin K 3 , Spores, Fungal , Vitamin K 3/metabolism , Ultraviolet Rays , Hypoxia/metabolism
8.
Fungal Biol ; 127(7-8): 1231-1240, 2023.
Article in English | MEDLINE | ID: mdl-37495313

ABSTRACT

All fungi emit mixtures of volatile organic compounds (VOCs) during growth. The qualitative and quantitative composition of these volatile mixtures vary with the species of fungus, the age of the fungus, and the environmental parameters attending growth. In nature, fungal VOCs are found as combinations of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, and are responsible for the characteristic odors associated with molds, mushrooms and yeasts. One of the single most common fungal volatiles is 1-octen-3-ol also known as "mushroom alcohol" or "matsutake alcohol." Many volatiles, including 1-octen-3-ol, serve as communication agents and display biological activity as germination inhibitors, plant growth retardants or promoters, and as semiochemicals ("infochemicals") in interactions with arthropods. Volatiles are understudied and underappreciated elements of the chemical lives of fungi. This review gives a brief introduction to fungal volatiles in hopes of raising awareness of the physiological importance of these gas phase fungal metabolites to encourage mycologists and other biologists to stop "throwing away the head space."


Subject(s)
Volatile Organic Compounds , Octanols/metabolism , Ketones
9.
Fungal Biol ; 127(7-8): 1241-1249, 2023.
Article in English | MEDLINE | ID: mdl-37495314

ABSTRACT

Candidiasis is a significant fungal infection with high mortality and morbidity rates worldwide. Candida albicans is the most dominant species responsible for causing different manifestations of candidiasis. Certain virulence traits as well as its resistance to antifungal drugs contribute to the pathogenesis of this yeast. This study was designed to determine the production of some virulence factors, such as biofilm formation and extracellular hydrolytic enzymes (esterase, coagulase, gelatinase, and catalase) by this fungus, as well as its antifungal resistance profile. A total of 304 clinical C. albicans isolates obtained from different clinical specimens were identified by a conventional diagnostic protocol. The antifungal susceptibility of C. albicans strains was determined by disk diffusion technique against commercially available antifungal disks, such as nystatin 50 µg, amphotericin B 100 unit, fluconazole 25 µg, itraconazole 10 µg, ketoconazole 10 µg, and voriconazole 1 µg. The assessment of biofilm formation was determined by the tube staining assay and spectrophotometry. Gelatinase, coagulase, catalase, and esterase enzyme production was also detected using standard techniques. A total of 66.1% (201/304) and 28.9% (88/304) of C. albicans strains were susceptible-dose dependent (SDD) to nystatin and itraconazole, respectively. Among the antifungal drugs, C. albicans strains showed high resistance to ketoconazole 24.7% (75/304); however, no statistically significant relationship between the clinical origin of C. albicans isolates and antifungal drug resistance pattern was detected. For virulence factors, the majority of the C. albicans strains actively produced biofilm and all hydrolytic enzymes. Biofilm formation was demonstrated by 88% (267/304) of the strains with a quantitative mean value 0.1762 (SD ± 0.08293). However, 100% (304/304) of isolates produced catalase enzyme, 69% (211/304) produced coagulase, 66% (197/304) produced gelatinase, and 52% (157/304) produced esterase enzyme. A significant relationship between the source of specimens and biofilm formation by C. albicans was observed; nevertheless, there was no significant relationship between different sources of C. albicans strains and the production of different enzymatic virulence factors. The study found that C. albicans strains have excellent potential to produce virulence markers and resistance to antifungals, which necessitates surveillance of these opportunistic pathogens to minimize the chances of severe invasive infections.


Subject(s)
Antifungal Agents , Candidiasis , Humans , Antifungal Agents/pharmacology , Candida albicans , Itraconazole/pharmacology , Catalase , Nystatin/pharmacology , Virulence , Ketoconazole , Pakistan , Coagulase , Candida , Candidiasis/microbiology , Esterases , Virulence Factors , Drug Resistance, Fungal , Microbial Sensitivity Tests , Gelatinases
10.
Fungal Biol ; 127(7-8): 1250-1258, 2023.
Article in English | MEDLINE | ID: mdl-37495315

ABSTRACT

Soybean, corn, and cotton crops are afflicted by several noctuid pests and the development of bioinsecticides could help control these pests. The fungus Metarhizium rileyi has the greatest potential because its epizootics decimate caterpillar populations in the absence of insecticide applications. However, insect-pathogenic fungi when used for insect control in agriculture have low survival mainly due to the deleterious effects of ultraviolet radiation and heat from solar radiation. In this study, fourteen isolates of M. rileyi were studied and compared with isolates ARSEF 324 and ARSEF 2575 of Metarhizium acridum and Metarhizium robertsii, respectively, whose sensitivity to UV-B radiation had previously been studied. Conidia were exposed at room temperature (ca. 26 °C) to 847.90 mWm-2 of Quaite-weighted UV-B using two fluorescent lamps. The plates containing the conidial suspensions were irradiated for 1, 2, and 3 h, providing doses of 3.05, 6.10, and 9.16 kJ m2, respectively. A wide variability in conidial UV-B tolerance was found among the fourteen isolates of M. rileyi. Isolate CNPSo-Mr 150 was the most tolerant isolate (germination above 80% after 2 h exposure), which was comparable to ARSEF 324 (germination above 90% after 2 h exposure), the most tolerant Metarhizium species. The least tolerant isolates were CNPSo-Mr 141, CNPSo-Mr 142, CNPSo-Mr 156, and CNPSo-Mr 597. Nine M. rileyi isolates exhibited similar tolerance to UV-B radiation as ARSEF 2575 (germination above 50% after 2 h exposure). In conclusion, the majority of M. rileyi isolates studied can endure 1 or 2 h of UV-B radiation exposure. However, after 3 h of exposure, the germination of all studied isolates reduced below 40%, except for CNPSo-Mr 150 and ARSEF 324.


Subject(s)
Metarhizium , Animals , Ultraviolet Rays , Spores, Fungal , Insecta
11.
Front Med (Lausanne) ; 9: 819702, 2022.
Article in English | MEDLINE | ID: mdl-35223918

ABSTRACT

COVID-19 pandemic has heightened the interest toward diagnosis and treatment of infectious diseases. Nuclear medicine with its powerful scintigraphic, single photon emission computer tomography (SPECT) and positron emission tomography (PET) imaging modalities has always played an important role in diagnosis of infections and distinguishing them from the sterile inflammation. In addition to the clinically available radiopharmaceuticals there has been a decades-long effort to develop more specific imaging agents with some examples being radiolabeled antibiotics and antimicrobial peptides for bacterial imaging, radiolabeled anti-fungals for fungal infections imaging, radiolabeled pathogen-specific antibodies and molecular engineered constructs. In this opinion piece, we would like to discuss some examples of the work published in the last decade on developing nuclear imaging agents for bacterial, fungal, and viral infections in order to generate more interest among nuclear medicine community toward conducting clinical trials of these novel probes, as well as toward developing novel radiotracers for imaging infections.

12.
Arch Microbiol ; 204(1): 83, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34958400

ABSTRACT

White light during mycelial growth influences high conidial stress tolerance of the insect-pathogenic fungus Metarhizium robertsii, but little is known if low- or high-white light irradiances induce different stress tolerances. The fungus was grown either in the dark using two culture media: on minimal medium (Czapek medium without sucrose = MM) or on potato dextrose agar (PDA) or PDA medium under five different continuous white light irradiances. The stress tolerances of conidia produced on all treatments were evaluated by conidial germination on PDA supplemented with KCl for osmotic stress or on PDA supplemented with menadione for oxidative stress. Conidia produced on MM in the dark were more tolerant to osmotic and oxidative stress than conidia produced on PDA in the dark or under the light. For osmotic stress, growth under the lower to higher irradiances produced conidia with similar tolerances but more tolerant than conidia produced in the dark. For oxidative stress, conidia produced under the white light irradiances were generally more tolerant to menadione than conidia produced in the dark. Moreover, conidia produced in the dark germinated at the same speed when incubated in the dark or under lower irradiance treatment. However, at higher irradiance, conidial germination was delayed compared to germination in the dark, which germinated faster. Therefore, growth under light from low to high irradiances induces similar conidial higher stress tolerances; however, higher white light irradiances cause a delay in germination speed.


Subject(s)
Light , Metarhizium , Metarhizium/physiology , Metarhizium/radiation effects , Osmotic Pressure , Oxidative Stress , Spores, Fungal/radiation effects
13.
Bull Entomol Res ; : 1-8, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34620258

ABSTRACT

The Mormon cricket (MC), Anabrus simplex Haldeman, 1852 (Orthoptera: Tettigoniidae), has a long and negative history with agriculture in Utah and other western states of the USA. Most A. simplex populations migrate in large groups, and their feeding can cause significant damage to forage plants and cultivated crops. Chemical pesticides are often applied, but some settings (e.g. habitats of threatened and endangered species) call for non-chemical control measures. Studies in Africa, South America, and Australia have assessed certain isolates of Metarhizium acridum as very promising pathogens for Orthoptera: Acrididae (locust) biocontrol. In the current study, two isolates of Metarhizium robertsii, one isolate of Metarhizium brunneum, one isolate of Metarhizium guizhouense, and three isolates of M. acridum were tested for infectivity to MC nymphs and adults of either sex. Based on the speed of mortality, M. robertsii (ARSEF 23 and ARSEF 2575) and M. brunneum (ARSEF 7711) were the most virulent to instars 2 to 5 MC nymphs. M. guizhouense (ARSEF 7847) from Arizona was intermediate and the M. acridum isolates (ARSEF 324, 3341, and 3609) were the slowest killers. ARSEF 2575 was also the most virulent to instar 6 and 7 nymphs and adults of MC. All of the isolates at the conidial concentration of 1 × 107 conidia ml-1 induced approximately 100% mortality by 6 days post application of fungal conidia. In conclusion, isolates ARSEF 23, ARSEF 2575, and ARSEF 7711 acted most rapidly to kill MC under laboratory conditions. The M. acridum isolates, however, have much higher tolerance to heat and UV-B radiation, which may be critical to their successful use in field application.

14.
Fungal Biol ; 125(11): 891-904, 2021 11.
Article in English | MEDLINE | ID: mdl-34649676

ABSTRACT

Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.


Subject(s)
Beauveria , Metarhizium , Animals , Cordyceps , Hypocreales , Insecta , Lighting , Spores, Fungal
15.
Fungal Biol ; 125(8): 646-657, 2021 08.
Article in English | MEDLINE | ID: mdl-34281658

ABSTRACT

Differential sensitivities to the cell wall stress caused by Congo red (CR) have been observed in many fungal species. In this study, the tolerances and sensitivities to CR was studied with an assorted collection of fungal species from three phylogenetic classes: Sordariomycetes, Dothideomycetes, and Eurotiomycetes, three orders, and eight families. These grouped into different ecological niches, such as insect pathogens, plant pathogens, saprotrophs, and mycoparasitics. The saprotroph Aspergillus niger and the mycoparasite Trichoderma atroviride stood out as the most resistant species to cell wall stress caused by CR, followed by the plant pathogenic fungi, a mycoparasite, and other saprotrophs. The insect pathogens had low tolerance to CR. The insect pathogens Metarhizium acridum and Cordyceps fumosorosea were the most sensitive to CR. In conclusion, Congo red tolerance may reflect ecological niche, accordingly, the tolerances of the fungal species to Congo red were closely aligned with their ecology.


Subject(s)
Cell Wall , Congo Red , Fungi , Cell Wall/drug effects , Congo Red/pharmacology , Cordyceps/drug effects , Ecosystem , Fungi/drug effects , Humans , Hypocreales/drug effects , Metarhizium/drug effects , Phylogeny
16.
Arch Insect Biochem Physiol ; 105(4): e21745, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33029844

ABSTRACT

Chagas disease is one of the most important insect-vectored diseases in Brazil. The entomopathogenic fungus Metarhizium anisopliae was evaluated against nymphs and adults of Panstrongylus megistus, Triatoma infestans, and T. sordida. Pathogenicity tests at saturated humidity demonstrated high susceptibility to fungal infection. The shortest estimates of 50% lethal time (LT50 ) for P. megistus varied from 4.6 (isolate E9) to 4.8 days (genetically modified strain 157p). For T. infestans, the shortest LT50 was 6.3 (E9) and 7.3 days (157p). For T. sordida, the shortest LT50 was 8.0 days (157p). The lethal concentration sufficient to kill 50% of T. infestans (LC50 ) was 1.9 × 107 conidia/ml for strain 157p. In three chicken coops that were sprayed with M. anisopliae, nymphs especially were well controlled, with a great population reduction of 38.5% after 17 days. Therefore M. anisopliae performed well, controlling Triatominae in both laboratory and field studies.


Subject(s)
Metarhizium/pathogenicity , Panstrongylus/microbiology , Pest Control, Biological/methods , Triatoma/microbiology , Animals , Brazil , Chagas Disease/prevention & control , Chickens , Housing, Animal , Humidity , Insect Vectors/microbiology , Nymph/microbiology
17.
Fungal Biol ; 124(5): 263-272, 2020 05.
Article in English | MEDLINE | ID: mdl-32389288

ABSTRACT

Fungi sense light and utilize it as a source of environmental information to prepare against many stressful conditions in nature. In this study, Metarhizium robertsii was grown on: 1) potato dextrose agar medium (PDA) in the dark (control); 2) under nutritive stress in the dark; and 3) PDA under continuous (A) white light; (B) blue light lower irradiance = LI; (C) blue light higher irradiance = HI; (D) green light; and (E) red light. Conidia produced under these treatments were tested against osmotic stress and UV radiation. In addition, a suite of genes usually involved in different stress responses were selected to study their expression patterns. Conidia produced under nutritive stress in the dark were the most tolerant to both osmotic stress and UV radiation, and the majority of their stress- and virulence-related genes were up-regulated. For osmotic stress tolerance, conidia produced under white, blue LI, and blue HI lights were the second most tolerant, followed by conidia produced under green light. Conidia produced under red light were the least tolerant to osmotic stress and less tolerant than conidia produced on PDA medium in the dark. For UV tolerance, conidia produced under blue light LI were the second most tolerant to UV radiation, followed by the UV tolerances of conidia produced under white light. Conidia produced under blue HI, green, and red lights were the least UV tolerant and less tolerant than conidia produced in the dark. The superoxide dismutases (sod1 and sod2), photolyases (6-4phr and CPDphr), trehalose-phosphate synthase (tps), and protease (pr1) genes were highly up-regulated under white light condition, suggesting a potential role of these proteins in stress protection as well as virulence after fungal exposure to visible spectrum components.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Gene Expression Regulation, Fungal , Light , Metarhizium , Spores, Fungal , Gene Expression Regulation, Fungal/radiation effects , Metarhizium/growth & development , Metarhizium/radiation effects , Osmotic Pressure , Spores, Fungal/radiation effects , Ultraviolet Rays
18.
Fungal Biol ; 124(5): 273-288, 2020 05.
Article in English | MEDLINE | ID: mdl-32389289

ABSTRACT

Osmotic stress induced by high solute concentration can prevent fungal metabolism and growth due to alterations in properties of the cytosol, changes in turgor, and the energy required to synthesize and retain compatible solutes. We used germination to quantify tolerance/sensitivity to the osmolyte KCl (0.1-4.5 M, in 0.1 M increments) for 71 strains (40 species) of ecologically diverse fungi. These include 11 saprotrophic species (17 strains, including two xerophilic species), five mycoparasitic species (five strains), six plant-pathogenic species (13 strains), and 19 entomopathogenic species (36 strains). A dendrogram obtained from cluster analyses, based on KCl inhibitory concentrations 50 % and 90 % calculated by Probit Analysis, revealed three groups of fungal isolates accordingly to their osmotolerance. The most-osmotolerant group (Group 3) contained the majority of saprotrophic fungi, and Aspergillus niger (F19) was the most tolerant. The highly xerophilic Aspergillus montevidense and Aspergillus pseudoglaucus were the second- and third-most tolerant species, respectively. All Aspergillus and Cladosporium species belonged to Group 3, followed by the entomopathogens Colletotrichum fioriniae, Simplicillium lanosoniveum, and Trichothecium roseum. Group 2 exhibited a moderate osmotolerance, and included plant-pathogens such as Colletotrichum and Fusarium, mycoparasites such as Clonostachys spp, some saprotrophs such as Mucor and Penicillium spp., and some entomopathogens such as Isaria, Lecanicillium, Mariannaea, Simplicillium, and Torrubiella. Group 1 contained the osmo-sensitive strains: the rest of the entomopathogens and the mycoparasitic Gliocladium and Trichoderma. Although stress tolerance did not correlate with their primary ecological niche, classification of these 71 fungal strains was more closely aligned with their ecology than with their phylogenetic relatedness. We discuss the implications for both microbial ecology and fungal taxonomy.


Subject(s)
Ecosystem , Fungi , Salt Tolerance , Fungi/classification , Fungi/physiology , Phylogeny
19.
Fungal Biol ; 124(5): 235-252, 2020 05.
Article in English | MEDLINE | ID: mdl-32389286

ABSTRACT

Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in São José dos Campos, São Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology.


Subject(s)
Fungi , Stress, Physiological , Brazil , Fungi/physiology
20.
Fungal Biol ; 124(5): 418-426, 2020 05.
Article in English | MEDLINE | ID: mdl-32389304

ABSTRACT

The fungal species Trichoderma is frequently found in soil antagonizing plant-pathogenic fungi as well as parasitizing plant-pathogenic nematodes. Metarhizium species are insect-pathogenic fungi that are used throughout the world to control agricultural insect pests. Here, we determine whether the antagonism (A) of Trichoderma atroviride to Metarhizium robertsii during growth and spore formation can impact the stress biology of M. robertsii conidia. Cultures of M. robertsii were either produced without exposure to T. atroviride (control) or in the presence of T. atroviride. M. robertsii was grown in dual culture with T. atroviride on potato dextrose agar (PDA) using the following treatments: 1) Trichoderma inoculated at the same time with Metarhizium (A0); 2) Trichoderma inoculated two days after the inoculation of Metarhizium (A2); 3) Trichoderma inoculated four days after Metarhizium (A4); 4) Trichoderma inoculated 6 d after Metarhizium (A6); 5) M. robertsii grown alone on PDA medium (control); and 6) M. robertsii grown alone on minimal medium (Czapek-Dox medium without sucrose) (MM). Germination of M. robertsii conidia from all six treatments was then assessed under osmotic, oxidative, UV-B, and thermal stress. M. robertsii conidia produced on MM were the most tolerant to all stress conditions. For all stress conditions, conidia from treatments A0 and A2 were not viable. For osmotic stress, conidia produced in treatment A4 were the most tolerant, followed by conidia from treatment A6, which were both more tolerant than the control. For oxidative stress, conidia produced in both A4 and A6 treatments were similarly tolerant and more tolerant than conidia produced in the control. For thermal stress, conidia produced in treatments A4, A6, and control (PDA) were similarly heat-tolerant. For UV-B stress, conidia produced in treatments A4 and A6 were equally tolerant and more tolerant than conidia produced in the control. The germination speed of conidia produced in all treatments, A0, A2, A4, and A6 was also tested. Conidia produced on MM germinated faster than the other treatments. Conidia produced in the A4 treatment were the second fastest, followed by conidia produced in treatment A6. Both A4 and A6 conidia germinated faster than conidia produced in the control treatment. Conidia produced in the treatments A0 and A2 did not germinate in 24 h. In summary, moderate levels of biotic stress from a fungal competitor or low-nutrient conditions can enhance the stress tolerance of M. robertsii conidia.


Subject(s)
Hypocreales , Metarhizium , Microbial Interactions , Hot Temperature , Hypocreales/physiology , Metarhizium/physiology , Osmotic Pressure , Spores, Fungal/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...